Để hiểu nội dung bài viết này, các bạn cần phải nắm được khái niệm Cronbach’s Alpha là gì và các điều kiện cần thỏa trong phân tích Cronbach’s Alpha.
1. Khái niệm kiểm định độ tin cậy thang đo Cronbach’s Alpha?
Kiểm định độ tin cậy thang đo Cronbach’s Alpha là gì và tại sao phải sử dụng đến nó? Trong nghiên cứu định lượng, việc đo lường các nhân tố lớn sẽ rất khó khăn và phức tạp, không thể chỉ sử dụng những thang đo đơn giản (chỉ dùng 1 câu hỏi qua sát đo lường) mà phải sử dụng các thang đo chi tiết hơn (dùng nhiều câu hỏi quan sát để đo lường nhân tố) để hiểu rõ được tính chất của nhân tố lớn.
Do vậy, khi lập bảng câu hỏi nghiên cứu, chúng ta thường tạo các biến quan sát x1, x2, x3, x4, x5… là biến con của nhân tố A nhằm mục đích thay vì đi đo lường cả một nhân tố A tương đối trừu tượng và khó đưa ra kết quả chính xác thì chúng ta đi đo lường các biến quan sát nhỏ bên trong rồi suy ra tính chất của nhân tố.Như vậy, khái niệm
“thang đo” trong cụm kiểm định độ tin cậy thang đo ý muốn nói đến
một tập hợp các biến quan sát con có khả năng đo được, thể hiện được tính chất của nhân tố mẹ. Các bạn không được
hiểu lầm kiểm định thang đo ở đây là thang đo Likert nhé.
Tuy nhiên, không phải lúc nào tất cả các biến quan sát x1, x2, x3, x4, x5… chúng ta đưa ra để đo lường cho nhân tố A đều hợp lý, đều phản ánh được khái niệm, tính chất của A. Do vậy, cần phải có một công cụ giúp kiểm tra xem biến quan sát nào phù hợp, biến quan sát nào không phù hợp để đưa vào thang đo.
Kiểm định độ tin cậy thang đo Cronbach’s Alpha là công cụ chúng ta cần. Công cụ này sẽ giúp kiểm tra xem các biến quan sát của nhân tố mẹ (nhân tố A) có đáng tin cậy hay không, có tốt không. Phép kiểm định này phản ánh mức độ tương quan chặt chẽ giữa các biến quan sát trong cùng 1 nhân tố. Nó cho biết trong các biến quan sát của một nhân tố, biến nào đã đóng góp vào việc đo lường khái niệm nhân tố, biến nào không. Kết quả Cronbach Alpha của nhân tố tốt thể hiện rằng các biến quan sát chúng ta liệt kê là rất tốt, thể hiện được đặc điểm của nhân tố mẹ, chúng ta đã có được một thang đo tốt cho nhân tố mẹ này.
2. Đo lường độ tin cậy bằng hệ số Cronbach’s Alpha
– Cronbach (1951) đưa ra hệ số tin cậy cho thang đo. Chú ý, hệ số Cronbach’s Alpha chỉ đo lường độ tin cậy của thang đo (bao gồm từ 3 biến quan sát trở lên ) chứ không tính được độ tin cậy cho từng biến quan sát (Nguồn: Nguyễn Đình Thọ, Phương pháp nghiên cứu khoa học trong kinh doanh, NXB Tài chính, Tái bản lần 2, Trang 355).
– Hệ số Cronbach’s Alpha có giá trị biến thiên trong đoạn [0,1]. Về lý thuyết, hệ số này càng cao càng tốt (thang đo càng có độ tin cậy cao). Tuy nhiên điều này không hoàn toàn chính xác. Hệ số Cronbach’s Alpha quá lớn (khoảng từ 0.95 trở lên) cho thấy có nhiều biến trong thang đo không có khác biệt gì nhau, hiện tượng này gọi là trùng lắp trong thang đo (Nguyễn Đình Thọ, Phương pháp nghiên cứu khoa học trong kinh doanh, NXB Tài chính, Tái bản lần 2, Trang 364).
3. Các tiêu chuẩn trong kiểm định độ tin cậy thang đo Cronbach’s Alpha
– Nếu một biến đo lường có hệ số tương quan biến tổng Corrected Item – Total Correlation ≥ 0.3 thì biến đó đạt yêu cầu (Nguồn: Nunnally, J. (1978), Psychometric Theory, New York, McGraw-Hill).
– Mức giá trị hệ số Cronbach’s Alpha (Nguồn: Hoàng Trọng, Chu Nguyễn Mộng Ngọc (2008), Phân tích dữ liệu nghiên cứu với SPSS Tập 2, NXB Hồng Đức, Trang 24):
- Từ 0.8 đến gần bằng 1: thang đo lường rất tốt.
- Từ 0.7 đến gần bằng 0.8: thang đo lường sử dụng tốt.
- Từ 0.6 trở lên: thang đo lường đủ điều kiện.
– Chúng ta cũng cần chú ý đến giá trị của cột Cronbach’s Alpha if Item Deleted, cột này biểu diễn hệ số Cronbach’s Alpha nếu loại biến đang xem xét. Thông thường chúng ta sẽ đánh giá cùng với hệ số tương quan biến tổng Corrected Item – Total Correlation, nếu giá trị Cronbach’s Alpha if Item Deleted lớn hơn hệ số Cronbach Alpha và Corrected Item – Total Correlation nhỏ hơn 0.3 thì sẽ loại biến quan sát đang xem xét để tăng độ tin cậy của thang đo.
4. Hướng dẫn kiểm định độ tin cậy thang đo Cronbach Alpha trên SPSS
Để thực hiện kiểm định độ tin cậy thang đo Cronbach’s Alpha trong SPSS 20, chúng ta vào Analyze > Scale > Reliability Analysis…
Lần lượt phân tích với từng thang đo,
TUYỆT ĐỐI không được đưa tất cả các biến quan sát vào chạy một lần, lý do vì sao mời bạn xem chi tiết hơn ở
bài viết này.
Dưới đây mình sẽ phân tích mẫu cho 2 thang đo: TN (Lương, thưởng, phúc lợi) và DK (Điều kiện làm việc). Đưa 5 biến quan sát thuộc nhân tố TN vào mục Items bên phải. Tiếp theo chọn vào Statistics…
Trong tùy chọn Statistics, các bạn tích vào các mục giống như hình. Sau đó chọn Continue để cài đặt được áp dụng.
Sau khi click Continue, SPSS sẽ quay về giao diện ban đầu, các bạn nhấp chuột vào OK để xuất kết quả ra Ouput:
Kết quả
kiểm định độ tin cậy thang đo Cronbach’s Alpha của nhóm biến quan sát TN như sau:
® Kết quả kiểm định cho thấy các biến quan sát đều có hệ số tương quan tổng biến phù hợp (≥ 0.3). Hệ số Cronbach’s Alpha = 0.790 ≥ 0.6 nên đạt yêu cầu về độ tin cậy.
Chú thích các khái niệm:
- Cronbach’s Alpha: Hệ số Cronbach’s Alpha
- N of Items: Số lượng biến quan sát
- Scale Mean if Item Deleted: Trung bình thang đo nếu loại biến
- Scale Variance if Item Deleted: Phương sai thang đo nếu loại biến
- Corrected Item-Total Correlation: Tương quan biến tổng
- Cronbach’s Alpha if Item Deleted: Hệ số Cronbach’s Alpha nếu loại biến
Thực hiện tương tự cho nhóm “Điều kiện làm việc”, nhóm này sẽ có một biến quan sát bị loại.
® Kết quả kiểm định cho thấy biến quan sát DK1 có hệ số tương quan biến tổng là 0.173 < 0.3. Giá trị Cronbach’s Alpha if Item Deleted của DK1 là 0.827 > 0.711. Tác giả quyết định loại biến DK1 nhằm tăng độ tin cậy của thang đo. Chạy lại kiểm định lần thứ 2, ta có kết quả như sau:
® Kết quả kiểm định cho thấy các biến quan sát đều có hệ số tương quan tổng biến phù hợp (≥ 0.3). Hệ số Cronbach’s Alpha = 0.827 ≥ 0.6 nên đạt yêu cầu về độ tin cậy.
Như vậy, sau
kiểm định Cronbach’s Alpha, có 1 biến quan sát là DK1 cần phải được loại bỏ trước khi đưa vào phân tích nhân tố khám phá EFA. Bảng thống kê kết quả tổng hợp lần kiểm định cuối cùng của từng nhóm biến như sau:
VIDEO HƯỚNG DẪN
DienDan.Edu.Vn Cám ơn bạn đã quan tâm và rất vui vì bài viết đã đem lại thông tin hữu ích cho bạn.DienDan.Edu.Vn! là một website với tiêu chí chia sẻ thông tin,... Bạn có thể nhận xét, bổ sung hay yêu cầu hướng dẫn liên quan đến bài viết. Vậy nên đề nghị các bạn cũng không quảng cáo trong comment này ngoại trừ trong chính phần tên của bạn.Cám ơn.